Published:2023-05-17 Last Update: 2023-06-27 16:36:56

Read the following sentences

森林警備隊が空にいるワシを見た。


The ranger saw the eagle in the sky.



  • What is the shape of ワシ/eagle?

The shape of your eagle or 「ワシ」

- Zwaan et al. (2002)

「森林警備隊が空にいるワシを見た」

Fig. 1: Eagle in the Sky

「森林警備隊が巣にいるワシを見た」

Fig. 2: Eagle in the Nest

  • We can mentally visualize the objects from words
  • It depends on the context

Embodied Cognition

- Language comprehension involves reproducing representations acquired through the surrounding environment, body, and mind

(e.g., Barsalou et al., 2008

  • Strong connection between words and their referents

Fig. 3: Concept of Embodied Cognition

Empirical Support for the Embodied Cognition in First Language

- Visual Aspects (e.g., shape, color, size)


- Motor

  • Involvement of action/motion area during reading action related nouns (e.g., Desai et al. 2016)

Second Language Acquisition (EFL context)

- Does language comprehension in L2 involve such a process?

  • The difference in acquisition process between L1 and L2
    (e.g., Jiang, 2000; Kühne & Gianelli, 2019; Li & Jeong, 2020

    • L1 acquisition:
      Involving rich contextual input
      (e.g., interacting object while hearing the sound of the word)

    • L2 learning:
      word-association
      (e.g., dog = 犬)

Research Question

- Is it possible for L2 learners to immediately mentally visualize the image of an object?



- Does L2 proficiency determine the degree of visualization?

Participants

Experimental materials

- 15 nouns

  • e.g., apple, bear, steak, tomato

Method

What is the font color?

Stroop Effect

- Receiving inconsistent information causes inhibition.

  • font color - meaning of the word

A Semantic Stroop Task (Connell & Lynott, 2009)

- Indicate a font color

Fig. 5: Two Types of the Sentences

Typicality of Colors

  • brown - bear (Typical)

  • white - bear (Atypical)

  • green - bear(Unrelated)

Fig. 6: Typical and Atypical Sentence

Experiment

Results

- Error bars represent Standard Error

Modeling Results

Conclusion

What I Found

  • With increase of L2 proficiency, readers immediately represent the color of the images.

  • But only typical color (e.g., 〇 brown bear × white bear)

What the Results Indicate

  • Not just orthographic processing, also quality of the understanding

References

Versions of R & Packages (Scrollable if you see this on your 💻)

sessionInfo()
## R version 4.1.1 (2021-08-10)
## Platform: x86_64-w64-mingw32/x64 (64-bit)
## Running under: Windows 10 x64 (build 22621)
## 
## Matrix products: default
## 
## locale:
## [1] LC_COLLATE=Japanese_Japan.932  LC_CTYPE=Japanese_Japan.932   
## [3] LC_MONETARY=Japanese_Japan.932 LC_NUMERIC=C                  
## [5] LC_TIME=Japanese_Japan.932    
## 
## attached base packages:
## [1] stats     graphics  grDevices utils     datasets  methods   base     
## 
## other attached packages:
##  [1] patchwork_1.1.1    ggsignif_0.6.3     grateful_0.1.11    moments_0.14      
##  [5] performance_0.9.0  fitdistrplus_1.1-6 survival_3.2-11    MASS_7.3-54       
##  [9] kableExtra_1.3.4   ggmosaic_0.3.3     ggpubr_0.4.0       qqplotr_0.0.5     
## [13] plotly_4.9.4.1     sjPlot_2.8.9       lmerTest_3.1-3     lme4_1.1-27.1     
## [17] Matrix_1.3-4       forcats_0.5.1      stringr_1.4.0      dplyr_1.0.7       
## [21] purrr_0.3.4        readr_2.0.1        tidyr_1.1.4        tibble_3.1.4      
## [25] ggplot2_3.3.5      tidyverse_1.3.1   
## 
## loaded via a namespace (and not attached):
##   [1] readxl_1.3.1        backports_1.2.1     systemfonts_1.0.3  
##   [4] lazyeval_0.2.2      splines_4.1.1       crosstalk_1.1.1    
##   [7] TH.data_1.1-0       digest_0.6.27       htmltools_0.5.2    
##  [10] fansi_0.5.0         magrittr_2.0.1      tzdb_0.1.2         
##  [13] openxlsx_4.2.4      modelr_0.1.8        sandwich_3.0-1     
##  [16] svglite_2.0.0       colorspace_2.0-2    rvest_1.0.1        
##  [19] ggrepel_0.9.1       haven_2.4.3         xfun_0.33          
##  [22] crayon_1.4.2        jsonlite_1.8.0      zoo_1.8-9          
##  [25] glue_1.4.2          gtable_0.3.0        emmeans_1.6.3      
##  [28] webshot_0.5.3       sjstats_0.18.1      sjmisc_2.8.7       
##  [31] car_3.0-11          DEoptimR_1.0-9      abind_1.4-5        
##  [34] scales_1.1.1        mvtnorm_1.1-2       DBI_1.1.1          
##  [37] rstatix_0.7.0       ggeffects_1.1.1     Rcpp_1.0.7         
##  [40] viridisLite_0.4.0   xtable_1.8-4        foreign_0.8-82     
##  [43] datawizard_0.4.0    htmlwidgets_1.5.4   httr_1.4.2         
##  [46] RColorBrewer_1.1-2  ellipsis_0.3.2      pkgconfig_2.0.3    
##  [49] farver_2.1.0        sass_0.4.0          dbplyr_2.1.1       
##  [52] utf8_1.2.2          tidyselect_1.1.1    labeling_0.4.2     
##  [55] rlang_1.0.6         effectsize_0.6.0.1  munsell_0.5.0      
##  [58] cellranger_1.1.0    tools_4.1.1         cli_3.1.0          
##  [61] generics_0.1.1      pacman_0.5.1        sjlabelled_1.1.8   
##  [64] broom_0.7.9         evaluate_0.17       fastmap_1.1.0      
##  [67] yaml_2.2.1          knitr_1.40          fs_1.5.0           
##  [70] zip_2.2.0           robustbase_0.93-8   nlme_3.1-152       
##  [73] xml2_1.3.2          compiler_4.1.1      rstudioapi_0.13    
##  [76] curl_4.3.2          reprex_2.0.1        bslib_0.3.0        
##  [79] stringi_1.7.5       highr_0.9           parameters_0.17.0  
##  [82] lattice_0.20-44     nloptr_1.2.2.2      vctrs_0.3.8        
##  [85] pillar_1.6.4        lifecycle_1.0.3     jquerylib_0.1.4    
##  [88] estimability_1.3    data.table_1.14.2   insight_0.17.0     
##  [91] R6_2.5.1            rio_0.5.27          codetools_0.2-18   
##  [94] boot_1.3-28         assertthat_0.2.1    withr_2.4.2        
##  [97] multcomp_1.4-18     bayestestR_0.11.5   hms_1.1.0          
## [100] grid_4.1.1          coda_0.19-4         minqa_1.2.4        
## [103] rmarkdown_2.17      carData_3.0-4       numDeriv_2016.8-1.1
## [106] lubridate_1.7.10

R Packages (Scrollable if you see this on your 💻)

## [[1]]
## R Core Team (2021). _R: A Language and Environment for Statistical
## Computing_. R Foundation for Statistical Computing, Vienna, Austria.
## <URL: https://www.R-project.org/>.
## 
## [[2]]
## Delignette-Muller ML, Dutang C (2015). "fitdistrplus: An R Package for
## Fitting Distributions." _Journal of Statistical Software_, *64*(4),
## 1-34. <URL: https://www.jstatsoft.org/article/view/v064i04>.
## 
## [[3]]
## Ludecke D (2018). "ggeffects: Tidy Data Frames of Marginal Effects from
## Regression Models." _Journal of Open Source Software_, *3*(26), 772.
## doi: 10.21105/joss.00772 (URL: https://doi.org/10.21105/joss.00772).
## 
## [[4]]
## Jeppson H, Hofmann H, Cook D (2021). _ggmosaic: Mosaic Plots in the
## 'ggplot2' Framework_. R package version 0.3.3, <URL:
## https://CRAN.R-project.org/package=ggmosaic>.
## 
## [[5]]
## Kassambara A (2020). _ggpubr: 'ggplot2' Based Publication Ready Plots_.
## R package version 0.4.0, <URL:
## https://CRAN.R-project.org/package=ggpubr>.
## 
## [[6]]
## Constantin A, Patil I (2021). "ggsignif: R Package for Displaying
## Significance Brackets for 'ggplot2'." _PsyArxiv_. doi:
## 10.31234/osf.io/7awm6 (URL: https://doi.org/10.31234/osf.io/7awm6),
## <URL: https://psyarxiv.com/7awm6>.
## 
## [[7]]
## Rodriguez-Sanchez F, Jackson CP, Hutchins SD (2022). _grateful:
## Facilitate citation of R packages_. R package version 0.1.5, <URL:
## https://github.com/Pakillo/grateful>.
## 
## [[8]]
## Zhu H (2021). _kableExtra: Construct Complex Table with 'kable' and
## Pipe Syntax_. R package version 1.3.4, <URL:
## https://CRAN.R-project.org/package=kableExtra>.
## 
## [[9]]
## Xie Y (2022). _knitr: A General-Purpose Package for Dynamic Report
## Generation in R_. R package version 1.40, <URL:
## https://yihui.org/knitr/>.
## 
## Xie Y (2015). _Dynamic Documents with R and knitr_, 2nd edition.
## Chapman and Hall/CRC, Boca Raton, Florida. ISBN 978-1498716963, <URL:
## https://yihui.org/knitr/>.
## 
## Xie Y (2014). "knitr: A Comprehensive Tool for Reproducible Research in
## R." In Stodden V, Leisch F, Peng RD (eds.), _Implementing Reproducible
## Computational Research_. Chapman and Hall/CRC. ISBN 978-1466561595,
## <URL: http://www.crcpress.com/product/isbn/9781466561595>.
## 
## [[10]]
## Bates D, Machler M, Bolker B, Walker S (2015). "Fitting Linear
## Mixed-Effects Models Using lme4." _Journal of Statistical Software_,
## *67*(1), 1-48. doi: 10.18637/jss.v067.i01 (URL:
## https://doi.org/10.18637/jss.v067.i01).
## 
## [[11]]
## Kuznetsova A, Brockhoff PB, Christensen RHB (2017). "lmerTest Package:
## Tests in Linear Mixed Effects Models." _Journal of Statistical
## Software_, *82*(13), 1-26. doi: 10.18637/jss.v082.i13 (URL:
## https://doi.org/10.18637/jss.v082.i13).
## 
## [[12]]
## Komsta L, Novomestky F (2015). _moments: Moments, cumulants, skewness,
## kurtosis and related tests_. R package version 0.14, <URL:
## https://CRAN.R-project.org/package=moments>.
## 
## [[13]]
## Rinker TW, Kurkiewicz D (2018). _pacman: Package Management for R_.
## version 0.5.0, <URL: http://github.com/trinker/pacman>.
## 
## [[14]]
## Pedersen T (2020). _patchwork: The Composer of Plots_. R package
## version 1.1.1, <URL: https://CRAN.R-project.org/package=patchwork>.
## 
## [[15]]
## Ludecke D, Ben-Shachar M, Patil I, Waggoner P, Makowski D (2021).
## "performance: An R Package for Assessment, Comparison and Testing of
## Statistical Models." _Journal of Open Source Software_, *6*(60), 3139.
## doi: 10.21105/joss.03139 (URL: https://doi.org/10.21105/joss.03139).
## 
## [[16]]
## Sievert C (2020). _Interactive Web-Based Data Visualization with R,
## plotly, and shiny_. Chapman and Hall/CRC. ISBN 9781138331457, <URL:
## https://plotly-r.com>.
## 
## [[17]]
## Almeida A, Loy A, Hofmann H (2018). _ggplot2 Compatible
## Quantile-Quantile Plots in R_, volume 10 number 2. <URL:
## https://doi.org/10.32614/RJ-2018-051>.
## 
## [[18]]
## Allaire J, Xie Y, McPherson J, Luraschi J, Ushey K, Atkins A, Wickham
## H, Cheng J, Chang W, Iannone R (2022). _rmarkdown: Dynamic Documents
## for R_. R package version 2.17, <URL:
## https://github.com/rstudio/rmarkdown>.
## 
## Xie Y, Allaire J, Grolemund G (2018). _R Markdown: The Definitive
## Guide_. Chapman and Hall/CRC, Boca Raton, Florida. ISBN 9781138359338,
## <URL: https://bookdown.org/yihui/rmarkdown>.
## 
## Xie Y, Dervieux C, Riederer E (2020). _R Markdown Cookbook_. Chapman
## and Hall/CRC, Boca Raton, Florida. ISBN 9780367563837, <URL:
## https://bookdown.org/yihui/rmarkdown-cookbook>.
## 
## [[19]]
## Ludecke D (2021). _sjPlot: Data Visualization for Statistics in Social
## Science_. R package version 2.8.9, <URL:
## https://CRAN.R-project.org/package=sjPlot>.
## 
## [[20]]
## Wickham H, Averick M, Bryan J, Chang W, McGowan LD, Francois R,
## Grolemund G, Hayes A, Henry L, Hester J, Kuhn M, Pedersen TL, Miller E,
## Bache SM, Muller K, Ooms J, Robinson D, Seidel DP, Spinu V, Takahashi
## K, Vaughan D, Wilke C, Woo K, Yutani H (2019). "Welcome to the
## tidyverse." _Journal of Open Source Software_, *4*(43), 1686. doi:
## 10.21105/joss.01686 (URL: https://doi.org/10.21105/joss.01686).

Books & Articles (Scrollable if you see this on your 💻)

  • Barsalou, L. W., Santos, A., Simmons, W. K., & Wilson, C. D. (2008). Language and simulation in conceptual processing. In M. De Vega, A. M. Glenberg, & A. C. A. Graesser (Eds.), Symbols, embodiment, and meaning (pp. 245–283). Oxford, England: Oxford University Press.

  • Connell, L., & Lynott, D. (2009). Is a bear white in the woods? Parallel representation of implied object color during language comprehension. Psychonomic Bulletin & Review, 16(3), 573–577.

  • Desai, R. H., Choi, W., Lai, V. T., & Henderson, J. M. (2016). Toward semantics in the wild: activation to manipulable nouns in naturalistic reading. Journal of Neuroscience, 36(14), 4050–4055.

  • de Koning, B. B., Wassenburg, S. I., Bos, L. T., & van der Schoot, M. (2017). Mental simulation of four visual object properties: similarities and differences as assessed by the sentence–picture verification task. Journal of Cognitive Psychology, 29(4), 420–432.

  • Jiang, N. (2000). Lexical representation and development in a second language. Applied Linguistics, 21(1), 47–77.

  • Kühne, K., & Gianelli, C. (2019). Is embodied cognition bilingual? Current evidence and perspectives of the embodied cognition approach to bilingual language processing. Frontiers in Psychology, 10, 108.

  • Li, P., & Jeong, H. (2020). The social brain of language: grounding second language learning in social interaction. npj Science of Learning, 5(1), 8.

  • Meara, P., & Miralpeix, I. (2016). Tools for researching vocabulary. Multilingual Matters.

  • Zwaan, R. A., Stanfield, R. A., & Yaxley, R. H. (2002). Language comprehenders mentally represent the shapes of objects. Psychological Science, 13(2), 168–171.

Masato Terai

This is the end of the slides